KAWABE and ISHII : TERMINATION OF ORDER - SORTED REWRITING WITH NON - MINIMAL
نویسنده
چکیده
SUMMARY In this paper, we extend the Gnaedig's re-sults[2][3] on termination of order-sorted rewriting. Gnaedig required a condition for order-sorted signatures, called minimality, for the termination proof. We get rid of this restriction by introducing a transformation from a TRS with an arbitrary order-sorted signature to another TRS with a minimal signature, and proving that this transformation preserves termination.
منابع مشابه
On Modularity of the Completeness in Order-Sorted Term Rewriting Systems
In this paper, we extend the results on the modularity of con uence and termination of single-sorted TRSs[3][6][7] to order-sorted ones. Order-sorted TRSs build a good framework for handling overloaded functions and subtypes. For proving modularity of completeness of ordersorted TRSs, we rst transform a TRS with overloaded functions to a non-overloaded one, and then we demonstrate that our tran...
متن کاملKAWABE and ISHII : THE COMPLETENESS OF ORDER - SORTED TERM REWRITING SYSTEMS IS PRESERVED
The currying of term rewriting systems (TRSs) is a transformation of TRSs from a functional form to an applicative form. We have already introduced an order-sorted version of currying and proved that the compatibility and con uence of order-sorted TRSs were preserved by currying[3]. In this paper, we focus on a key property of TRSs, completeness. We rst show some proofs omitted in ref.[3]. Then...
متن کاملCurrying of Order-Sorted Term Rewriting Systems
Term rewriting system is a helpful tool for implementing functional programming languages. We focus upon a transformation of term rewriting systems called currying. Currying transforms a term rewriting system with symbols of arbitrary arity into another one, which contains only nullary symbols with a single binary symbol called application. Currying in single-sorted case is explored in [1] but ...
متن کاملOrder-Sorted Termination: The Unsorted Way
We consider the problem of proving termination of ordersorted rewrite systems. The dominating method for proving termination of order-sorted systems has been to simply ignore sort information, and use the techniques developed for unsorted rewriting. The problem with this approach is that many order-sorted rewrite systems terminate because of the structure of the set of sorts. In these cases the...
متن کاملProving Termination Properties with mu-term
mu-term is a tool which can be used to verify a number of termination properties of (variants of) Term Rewriting Systems (TRSs): termination of rewriting, termination of innermost rewriting, termination of order-sorted rewriting, termination of context-sensitive rewriting, termination of innermost context-sensitive rewriting and termination of rewriting modulo specific axioms. Such termination ...
متن کامل